Clinical Evaluation of an Oral Electrolyte Solution Formulated Based on Strong Ion Difference (SID) and Using Propionate as the Organic Anion in the Treatment of Neonatal Diarrheic Calves with Strong Ion Acidosis
نویسندگان
چکیده
Background: It is postulated that the concentrations of the major strong ions (Na, K, and Cl) in oral electrolyte solutions play a major role in clinical efficacy of these solutions for rehydration and corrections of metabolic acid base derangements. Objectives: The purpose of this study was to test prospectively the efficacy of an OES (OESexp) formulated based on concentration of strong ion difference (SID) and propionate in a group of calves with naturally occurring neonatal diarrhea and clinically detectable dehydration and acid base abnormalities. Animals: Ten client owned calves of varying breeds, 2 22 days old, presented to a veterinary teaching hospital with a history of naturally occurring acute undifferentiated diarrhea, progressive depression and dehydration for treatment. Methods: Clinical and laboratory parameters were measured pre and post two oral electrolyte treatments to assess efficacy of the experimental OES to correct clinical and clinico pathological parameters. For the clinical trial the calves served as their own controls. For control of safety of medication 4 normal calves were force fed 4 L of OESexp and followed over a 24 hour period. Results: All calves had severe diarrhea and metabolic acidosis. The metabolic acidosis observed in the plasma of these calves and reflected by pH, , SID and base deficit was corrected significantly towards reference ranges (p < 0.05) with 3 two 2 L feedings 12 hours apart. Dehydration was significantly corrected and all calves were discharged 1 3 days post admission. Conclusion and Clinical Importance: The use of SID is a valid approach when formulating oral electrolytes solutions for use in calves with acute diarrhea and metabolic derangement. Sodium propionate is valid substitute for commonly used sodium base equivalents in North America in oral electrolyte solutions. HCO
منابع مشابه
Quantitative Physicochemical Analysis of Acid‐Base Balance and Clinical Utility of Anion Gap and Strong Ion Gap in 806 Neonatal Calves with Diarrhea
BACKGROUND Acid-base abnormalities in neonatal diarrheic calves can be assessed by using the Henderson-Hasselbalch equation or the simplified strong ion approach which use the anion gap (AG) or the strong ion gap (SIG) to quantify the concentration of unmeasured strong anions such as D-lactate. HYPOTHESIS/OBJECTIVES To determine and compare the clinical utility of AG and SIG in quantifying th...
متن کاملAcid-base disorders in calves with chronic diarrhea.
The aim of this study was to analyze disorders of acid-base balance in calves with chronic diarrhea caused by mixed, viral, bacterial and Cryptosporydium parvum infection. We compared results ob- tained with the classic model (Henderson-Hasselbalch) and strong ion approach (the Steward model). The study included 36 calves aged between 14 and 21 days. The calves were allocated to three groups: I...
متن کاملRisk Factors for the Development of Hypokalemia in Neonatal Diarrheic Calves
BACKGROUND Neonatal diarrheic calves have a clear negative potassium balance because of intestinal losses and decreased milk intake but in the presence of acidemia, they usually show normokalemic or hyperkalemic plasma concentrations. OBJECTIVES To assess whether marked hypokalemia occurs in response to the correction of acidemia and dehydration and to identify factors that are associated wit...
متن کاملStudy the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry
The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...
متن کاملMeasurement and Modeling of Mean Ionic Activity Coefficient in Aqueous Solution Containing NaNO3 and Poly Ethylene Glycol
Potentiometric investigation on {H2O+NaNO3+PEG1500} mixtures were made at T=308.15K, using electrochemical cells with two ion-selective electrodes, (Na+ glass) as the cation ion-selective electrode against (NO3- solvent-polymer PVC) as the anion ion-selective electrode. The mean ionic activity coefficients of NaNO3 were measu...
متن کامل